

Pergamon Tetrahedron Letters 42 (2001) 9203–9206

TETRAHEDRON LETTERS

Formation of 1,2,4-trioxolanes via 9,10-dicyanoanthracene(DCA)-sensitized photo-oxygenation of 2,2-diaryl-3-(2,2-diarylvinyl)oxiranes

Masaki Kamata,^{a,*} Ken-ichi Komatsu^a and Ryoichi Akaba^b

a *Department of Chemistry*, *Faculty of Education and Human Science*, *Niigata University*, *Ikarashi*, *Niigata* 950-2181, *Japan* b *Department of Chemistry and Advanced Engineering Course*, *Gunma College of Technology*, 580 *Toriba*-*machi*, *Maebashi*, *Gunma* 371-8530, *Japan*

Received 12 September 2001; revised 4 October 2001; accepted 19 October 2001

Abstract—9,10-Dicyanoanthracene-sensitized photo-oxygenation of 2,2-diaryl-3-(2,2-diarylvinyl)oxiranes **3** in acetonitrile did not afford the corresponding 1,2,4-trioxepines **4**, but 1,2,4-trioxolanes **7**. The structural assignment of **7** was reported, and the mechanism of the formation of **7** was proposed. © 2001 Elsevier Science Ltd. All rights reserved.

Extensive efforts have been devoted on the synthesis of cyclic peroxides since the discovery of artemisinin and related antimalarial $1,2,4$ -trioxanes.^{1–8} Photoinduced electron transfer (PET)^{9–11} oxygenation is an unique method in preparing cyclic peroxides because peroxide structure is easily constructed for arylated cyclopropanes,¹² oxiranes,^{13,14} aziridines,¹⁵ and olefins.^{16–22,†} Futamura et al. reported that 9,10-dicyanoanthracene(DCA)-sensitized photo-oxygenation of 1,2 diaryloxiranes **1** afforded the corresponding five-membered compounds, 1,2,4-trioxolanes **2** (eq. 1 in Scheme 1).^{23,24} However, same authors reported that DCA-sensitized photo-oxygenation of 2,2-diphenyl-3- (2,2-diphenylvinyl)oxirane **3a** afforded the corresponding seven-membered ring compound, 1,2,4-trioxepine **4a** (eq. 2 in Scheme 1).25 On the contrary, it was also reported that DCA-sensitized photo-oxygenation of 1,1-diphenyl-2-vinylcyclopropane **5** afforded a fivemembered ring compound, 1,2-dioxolane **6** (eq. 3 in Scheme 1).²⁶ These contrastive results and our own experiences in preparing various arylated cyclic peroxides^{$27-32$} let us question the formation of $4a$ from **3a** and prompted us to study PET oxygenation of the aryl substituted vinyloxiranes **3**. Herein, we wish to

[†] 9,10-Dicyanoanthracene(DCA)-sensitized PET oxygenation reaction is utilized for the synthesis of antimalarial cyclic peroxides such as 1,5-diaryl-6,7- dioxabicyclo[3.2.2]nonanes17–19 and 1,4-diaryl-2,3 dioxabicyclo[2.2.2]octanes.20–22

Scheme 1.

report that DCA-sensitized photo-oxygenation of 2,2 diaryl-3-(2,2-diarylvinyl)oxiranes **3** did not afford the trioxepines **4**, but 1,2,4-trioxolanes **7**.

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: $S0040-4039(01)01972-4$

Keywords: 1,2,4-trioxolane; vinyl oxirane; 9,10-dicyanoanthracene; photo-oxygenation; electron transfer; reaction mechanism.

^{*} Corresponding author. Tel./fax: +81-25-262-7150; e-mail: kamata@ ed.niigata-u.ac.jp

When an oxygen purged acetonitrile (50 ml) solution of **3a** (0.50 mmol) and DCA (0.01 mmol) was selectively irradiated (λ >360 nm) with a 2 kW Xe lamp for 7 h, 3,3-diphenyl-5-(2,2-diphenylvinyl)-1,2,4-trioxolane **7a** (37%) was obtained along with benzophenone **8a** (18%) and 3,3-diphenyl-2-propenal **9a** (6%) at 59% conversion (Scheme 2, run 1 in Table 1). $\frac{1}{2}$ However, the trioxepine **4a** was not produced at all. The structure of **7a** was determined by its spectral data. The absorption at 258.5 nm (ε =18400 in acetonitrile) in the UV spectrum could be due to the 2,2-diphenylvinyl moiety which is inconsistent with the structure of trioxepine **4a**. The structure of **7a** was also confirmed by comparisons of the NMR data of *cis*- and *trans*-3-phenyl-5-(2-phenylvinyl)-1,2,4 trioxolanes.33,34 Further structural confirmation was achieved by the reduction of **7** by triphenylphosphine. Futamura et al. reported that **8a** (47%), **9a** (42%) and 1,2,4,4-tetraphenyl-3-butenone **10a** (46%) were produced in the deoxygenation of **4a** by triphenylphosphine (eq. 4 in Scheme 1). It is considerably difficult to rationalize the formation of **10a** from **4a**. However, when **7ab** were treated with triphenylphosphine in dichloromethane at 20–25°C, diarylketones **8ab**, 3,3 diaryl-2-propenals **9ab**, and triphenylphosphine oxide **11** were isolated in excellent yields (Scheme 3, run 1–2 in Table 2).

In order to get insight into the reaction, we carried out the following experiments. When **3a** was subjected to the photo-oxygenation in the presence of biphenyl (3 equiv. to **3a**) under otherwise the same conditions, significant increase in the yield of **7a** (80%) was observed with concomitant decrease in the reaction time from 420 to 7 min (run 2 in Table 1).^{13,14} This observation is consistent with a mechanism in which biphenyl radical cation catalyzes the formation of **7**. The electron transfer mechanism was further supported by the observation that **7a** was still formed in the 2,4,7-trinitrofluorenone(TNF)-sensitized oxygenation of **3** (runs 3 and 6 in Table 1). No oxygenation of **3a** to **7a** occurred in the absence of DCA, oxygen, and/or visible light. Similar photo-oxygenation was also observed for

Scheme 2.

Table 1. Photo-sensitized oxygenation of 3-vinyloxiranes **3** by using various sensitizers^a

Run	Substrate	Sensitizer	Irrad. time (min)	Conv. $(\%)$	Yields of products/ $\%$ ^b			
						8	9	10
	3a	DCA ^c	420	59	37	18	h.	
2	3a	$DCA-BiPd$		100	80	15		
3	3a	TNF ^e	40	100			0	49
4	3 _b	DCA ^c	30	100	47	36		
5	3 _b	$DCA-BiPd$		100	52	24	6.	
6	3 _b	TNF ^e	50	100	17	25	θ	

^a **3**=0.5 mmol, CH₃CN=50 ml; irradiated by a 2 kW Xe lamp, λ >360 nm. b Isolated yield.

 c DCA=0.01 mmol

 d DCA=0.01 mmol, BiP(biphenyl)=1.5 mmol.

 e° **3**=0.2 mmol, TNF (2,4,7-trinitrofluorenone)=0.1 mmol, CH₃CN=20 ml.

[‡] All products were isolated by silica gel TLC and characterized by their spectral data. Selected data for **7a**: mp 120–120.5°C (*n*-hexane); IR (KBr, cm⁻¹) 3060, 3045, 2940, 1635,1600, 1578, 1492, 1080, 1058, 1030, 990; ¹H NMR (200 MHz, CDCl₃) δ 5.85 (d, 1H, *J*=8.1 Hz), 5.93 (d, 1H, *J* = 8.1 Hz), 7.18–7.50 (m, 18H), 7.53–7.66 (m, 2H); ¹³C NMR (50 MHz, CDCl₃) δ 102.97 (d, 1C), 110.42 (s, 1C), 119.49 (d, 1C) 126.69 (d, 2C), 127.15 (d, 2C), 128.07 (d, 2C), 128.16 (d, 3C), 128.22 (d, 5C), 128.39 (d, 1C), 128.60 (d, 2C), 129.14 (d, 1C), 130.04 (d, 2C), 137.69 (s, 1C), 137.90 (s, 1C), 140.37 (s, 1C), 140.84 (s, 1C), 151.93 (s, 1C); Anal. C, 82.70; H, 5.70, requires C, 82.74; H, 5.46; MS (EI) 374 (M⁺-32, 100); UV λ_{max} (CH_3CN) 258.5 (ε 18400) nm.

Table 2. Deoxygenation of trioxolanes 7 by triphenylphosphine.^a

Run	Substrate	Time (min)	Conv. $(\%)$	Yields of products $(\%)^b$		
				8		
	7а 7b	90 90	98 100	96 81	94 93	94 99

^a $7=0.2$ mmol, PPh₃=0.2 mmol, CH₂Cl₂=10 ml, 20–25°C. ^b Isolated yield.

3b. Thus, trioxolane **7b** was also obtained in moderate yield along with 4,4-dimethylbenzophenone **8b** and 3,3 di(*p*-methylphenyl)-2-propenal **9b** (runs 4–5 in Table 1), which may extend the generality of the DCA-sensitized conversion of the vinyl oxiranes **3** to trioxolanes **7**. §

On the basis of the above results, we propose a plausible mechanism involving a peroxy cation radical **12** for the formation of trioxolane **7** (Scheme 4). Thus, single electron oxidation of **3** produces the radical cation of **3** (**3**⁺) which reacts with molecular oxygen to generate **12**. The resulting peroxy radical cation **12** undergoes cyclization to give a trioxolane cation radical (**7**⁺), which would be reduced to afford **7**. Molecular orbital calculations (PM3) strongly support the preferential formation of **7**⁺ rather than **4**⁺ . Thus, the heats of formation of **12**, **7**⁺ , and **4**⁺ were calculated to be 275.6, 261.2, and 294.4 kcal/mol, respectively, which indicates that conversion of **12** to **4**⁺ is endothermic but that of 12 to 7⁺ is highly exothermic.[¶]

Scheme 4.

In summary, we have discovered that the DCA-sensitized PET oxygenation of arylvinyl oxiranes **3** afforded 1,2,4-trioxolanes **7**. We are now conducting the studies on the relationship between the Fe(II)-mediated fragmentation, the antimalarial intermediates, and the antimalarial activities for **7** and other cyclic peroxides.

Acknowledgements

We are grateful to Professor Eietsu Hasegawa (Faculty of Science, Niigata University), Professor Tsutomu Miyashi and Dr. Hiroshi Ikeda (Faculty of Science, Tohoku University) for their helpful comments and assistance.

References

- 1. Klayman, D. L. *Science* **1985**, 228, 1049.
- 2. Zhou, W.-S.; Xu, X.-X. *Acc*. *Chem*. *Res*. **1994**, 27, 211.
- 3. Haynes, R. K.; Vonwiller, S. C. *Acc*. *Chem*. *Res*. **1997**, 30, 73.
- 4. Meshnick, S. R.; Jefford, C. W.; Posner, G. H.; Avery, M. A.; Peters, W. *Parasitol*. *Today* **1996**, 12, 79.
- 5. Kim, H.-S.; Shibata, Y.; Wataya, Y.; Tsuchiya, K.; Masuyama, A.; Nojima, M. *J*. *Med*. *Chem*. **1999**, ⁴², 2604.
- 6. Nonami, Y.; Tokuyasu, T.; Masuyama, A.; Nojima, M.; McCullough, K. J.; Kim, H.-S.; Wataya, Y. *Tetrahedron Lett*. **2000**, 41, 4681.
- 7. Jefford, C. W.; Rossier, J.-C.; Milhouse, W. K. *Heterocycles* **2000**, 52, 1345.
- 8. O'Neill, P. M.; Pugh, M.; Davis, J.; Ward, S. F.; Park, B. K. *Tetrahedron Lett*. **2001**, ⁴², 4569.
- 9. Pienta, N. J. In *Photoinduced Electron Transfer Part C*; Fox, M. A.; Chanon, M., Eds.; Elsevier: Amsterdam, 1988.
- 10. Muller, F.; Mattay, J. *Chem*. *Rev*. **1993**, 93, 99 and references cited therein.
- 11. Miranda, M. A.; Garcia, H. *Chem*. *Rev*. **1994**, 94, 1063 and references cited therein.
- 12. Tamai, T.; Mizuno, K.; Hashida, I.; Otsuji, Y. *J*. *Org*. *Chem*. **1992**, ⁵⁷, 5338.
- 13. Schaap, A. P.; Lopez, L.; Gagnon, S. D. *J*. *Am*. *Chem*. *Soc*. **1983**, 105, 663.
- 14. Schaap, A. P.; Siddiqui, S.; Gagnon, S. D.; Lopez, L. *J*. *Am*. *Chem*. *Soc*. **1983**, 105, 5149.
- 15. Schaap, A. P.; Prasad, G.; Siddiqui, S. *Tetrahedron Lett*. **1984**, 25, 3035.

[§] *cis*-3-Phenyl-5-(2-phenylvinyl)-1,2,4-trioxolane was also obtained in 47% yield by the DCA-sensitized photo-oxygenation of *trans*-2 phenyl-3-(2-phenylvinyl)-1,2,4-trioxolane in the presence of biphenyl. The structure was determined by its authentic spectral data.³³

[¶] The geometries of **12**, **4**+ , and **7**+ were fully optimized and the details will be reported elsewhere.

- 16. Mizuno, K.; Tamai, T.; Hashida, I.; Otsuji, Y.; Kuriyama, Y.; Tokumaru, K. *J*. *Org*. *Chem*. **1994**, 59, 7329 and references cited therein.
- 17. Posner, G. H.; Wang, D.; Gonzares, L.; Tao, X.; Cumming, J. N.; Klinedinst, D.; Shapiro, T. A. *Tetrahedron Lett*. **1996**, 37, 815.
- 18. Posner, G. H.; Gonzares, L.; Cumming, J. N.; Klinedinst, D.; Shapiro, T. A. *Tetrahedron* **1997**, 53, 37.
- 19. Takahashi, Y.; Okitsu, O.; Ando, M.; Miyashi, T. *Tetrahedron Lett*. **1994**, 35, 3953.
- 20. Posner, G. H.; Tao, X.; Cumming, J. N.; Klinedinst, D.; Shapiro, T. A. *Tetrahedron Lett*. **1996**, 37, 7225.
- 21. Miyashi, T.; Konno, A.; Takahashi, Y. *J*. *Am*. *Chem*. *Soc*. **1988**, 110, 3676.
- 22. Miyashi, T.; Ikeda, H.; Konno, A.; Okitsu, O.; Takahashi, Y. *Pure Appl*. *Chem*. **1990**, 62, 1531.
- 23. Futamura, S.; Kusunose, S.; Ohta, H.; Kamiya, Y. *J*. *Chem*. *Soc*., *Chem*. *Commun*. **1982**, 1223.
- 24. Futamura, S.; Kusunose, S.; Ohta, H.; Kamiya, Y. *J*. *Chem*. *Soc*., *Perkin Trans*. 1 **1984**, 15.
- 25. Futamura, S.; Kamiya, Y. *J*. *Chem*. *Soc*., *Chem*. *Commun*. **1988**, 1053.
- 26. Shim, S. C.; Song, J. S. *J*. *Org*. *Chem*. **1986**, 51, 2817.
- 27. Miyashi, T.; Kamata, M.; Mukai, T. *J*. *Am*. *Chem*. *Soc*. **1986**, 108, 2755.
- 28. Miyashi, T.; Kamata, M.; Mukai, T. *J*. *Chem*. *Soc*., *Chem*. *Commun*. **1986**, 1577.
- 29. Miyashi, T.; Kamata, M.; Mukai, T. *J*. *Am*. *Chem*. *Soc*. **1987**, 109, 2788.
- 30. Kamata, M.; Furukawa, H.; Miyashi, T. *Tetrahedron Lett*. **1990**, 31, 681.
- 31. Kamata, M.; Nishikata, Y.; Kato, M. *J*. *Chem*. *Soc*., *Chem*. *Commun*. **1996**, 240.
- 32. Kamata, M.; Tanaka, T.; Kato, M. *Tetrahedron Lett*. **1996**, 37, 8181.
- 33. Mori, M.; Tabuchi, T.; Nojima, M.; Kusabayashi, S. *J*. *Org*. *Chem*. **1992**, ⁵⁷, 1649.
- 34. Chen, J.; Cao, Y.; Zhang, B.; Ming, Y. *Huaxue Xuebao* **1985**, 43, 601 and **1986**, ⁴⁴, 192.